publish this paper.

Lond., 159, 507.

in Crystals. New York: Wiley.

method has been applied with success to homologous series of sodium, potassium, lithium and silver soaps containing from four to twenty carbon atoms in the hydrocarbon chains.

I wish to thank Mr A. Lang for the preparation of the potassium caproate and Mr T. R. Lomer for measurement of the photographs, and the Directors of Lever

Acta Cryst. (1948). 1, 115

Die Kristallstruktur des einwertigen Kupferazids, CuN₃

VON HEINZ WILSDORF

Institut für allgemeine Metallkunde, Göttingen, Deutschland

(Eingegangen 15 Januar 1948)

CuN₃ belongs to the space group $C_{4h}^6 - I4_1/a$ with cell dimensions $a = 8 \cdot 65_3 \pm 0 \cdot 01$ A., $c = 5 \cdot 59_4 \pm 0 \cdot 01$ A., $c/a = 0 \cdot 646$. The observed density is $3 \cdot 26$ g.cm.⁻³, giving Z = 8 and a calculated density of $3 \cdot 34$ g.cm.⁻³ The atomic positions are: 8 Cu at (d); 8 N₁ at (c); and 16 N₁₁ at (f) with parameters $x = 0 \cdot 077$, $y = 0 \cdot 173$, $z = 0 \cdot 250$. The structure consists of Cu ions and of N₃ groups which are arranged in chains in the direction of the body diagonal of the cell. The structure is not related to any known standard type.

Während die strukturell bekannten anorganischen Azide nur als ein- oder zweiwertige Verbindungen vorkommen, bildet die Stickstoffwasserstoffsäure mit Kupfer das Monoazid CuN_3 und das Diazid $\text{Cu(N}_3)_2$. Somit ist ein Vergleich von Strukturen mit einer oder zwei N₃-Ketten bei dem gleichen Metall möglich. Als erster Teil der Untersuchung soll in dieser Arbeit die Struktur des CuN_3 beschrieben werden.

Die Darstellung des CuN3 wurde zunächst durch Wöhler & Krupko (1913) und Martin (1915) bekannt. Sie reduzierten eine Kupfersulfatlösung mit Kaliumbisulfit, gaben sie zu Natriumazid und beobachteten einen feinen weissen Niederschlag (Verfahren I). Bei eigenen Versuchen nach diesem Verfahren konnten Kristallnadeln bis zu 3 mm. Länge erhalten werden, die röntgenographisch nach dem Drehkristallverfahren untersucht wurden. Die Aufnahmen ergaben tetragonale Symmetrie mit a = 8,64 A. und c = 5,60 A. Eine zweite Möglichkeit der Darstellung wurde von Straumanis & Cirulis (1943) beschrieben. Danach lässt man wässrige HN3 auf Kupferpulver einwirken, das nach mehreren Tagen in eine farblose Substanz übergeht (Verfahren II), die dieselben Interferenzen wie die nach Verfahren I dargestellten Kristalle zeigte. Aus den unregelmässigen Aggregaten konnten keine Einkristalle isoliert werden.

Für die genaue Bestimmung der Gitterkonstanten (nach Straumanis) wurde ein Präparat nach Verfahren II gewählt, das $a=8,65_3\pm0,01$ A. und $c=5,59_4\pm0,01$ A. ergibt; c/a=0,646. Die pyknometrisch bestimmte Dichte beträgt $\rho=3,26$ g.cm.⁻³ ($\rho_{rontg.}=3,34$ g.cm.⁻³); die Zelle enthält danach 8 Moleküle: 8 Kupfer- und 24 Stickstoffatome. Da in den bekannten Aziden immer drei Stickstoffatome eine Kette bilden, wird das Gleiche auch hier als Arbeitshypothese zur Ermittlung der Struktur benutzt.

Brothers and Unilever Limited for permission to

References

VAND, V., LOMER, T. R. & LANG, A. (1947). Nature,

ZACHARIASEN, W. H. (1945). Theory of X-ray Diffraction

Die Flächenstatistik führt auf ein raumzentriertes Gitter. Die beobachteten Auslöschungen sind charakteristisch für die Raumgruppen $C_{4h}^6-I4_1/a$ und $D_{4h}^{19}-I4/amd$; möglich sind ferner alle Raumgruppen der Klassen $C_{4h}-4/m$, C_4-4 , $S_4-\overline{4}$, sowie $D_{4h}^{1,4,6,7,9,12,14,17,19}$, D_4^{1-10} , $C_{4v}^{1,4,6,7,9,12}$ und $D_{2d}^{1-5,8,9,11,12}$.

Da zwischen $D_{4h}^{19}-I4/amd$ und $C_{4h}^6-I4_1/a$ nicht experimentell entschieden werden konnte,* wurde die Ausschliessung auf rechnerischem Wege vorgenommen. Die beiden Raumgruppen unterscheiden sich durch die 16- und 32-zähligen Punktlagen. Wie bei der Diskussion von $C_{4h}^6 - I4_1/a$ später gezeigt werden wird, können die 16 äusseren Stickstoffatome nicht in den den beiden Raumgruppen gemeinsamen 4- und 8-zähligen Lagen untergebracht werden. Ferner ergab die Intensitätsrechnung, dass mit den bei D_{4h}^{19} -I4/amd angegebenen 16-zähligen Lagen, bei denen die Ketten nur senkrecht zur c-Achse liegen können, die beobachteten Intensitäten in keiner Weise wiedergegeben werden. Da ferner bei $D_{4h}^{19}-I4/amd$ nur noch eine 32-zählige Punktlage zur Verfügung steht, kann diese Raumgruppe für die Struktur nicht in Frage kommen.

Die zweite wahrscheinliche Raumgruppe ist C_{4h}^6 – $I4_1/a$. Hier stehen 4-, 8- und 16-zählige Punktlagen zur

^{*} Aus äusseren Gründen waren Schwenk- oder Goniometeraufnahmen nicht möglich.

Verfügung. Da (h00) nur mit h = 4n beobachtet wird, sind zwei senkrecht aufeinanderstehende vertikale Netzebenenscharen zu erwarten, die einen Abstand von $\frac{1}{4}a$ haben und gleiches Streuvermögen besitzen müssen. Wegen der nicht unerheblichen Intensität dieser Interferenzen werden die Kupferionen massgeblichen Anteil an der Streuung haben, und es liegt nahe, sie sich auf den Schnittgeraden dieser Netzebenenscharen zu denken: Punktlagen (c) oder (d). Wählt man für die Kupferionen (d), so lassen sich die 8 mittleren Stickstoffatome (N_I) in (c) und die 16 äusseren (N_{I1}) in (f) unterbringen.

Um die drei Parameter x, y und z der Punktlage (f)bestimmen zu können, wurden unter der Annahme eines symmetrischen N₃-Kettenbaues von bestimmter Länge zwei Hilfsparameter α und β eingeführt, von denen α den Neigungswinkel der Kette gegen [001], und β das Azimut gegen α bezeichnet, um das die Kette

Fig. 1. Zeichnung zur systematischen Intensitätsberechnung. *a*, Lage der N₃-Kette bei x=0 und y=0,25; *b*, Schwenkmöglichkeiten der Kette für die angegebenen Punktlagen.

um [001] geschwenkt wird (siehe Fig. 1). Die Intensitäten wurden zunächst für die Flächen (211), (220), (031) + (112) und (022) für ein Parameterfeld berechnet, und zwar für je 7 verschiedene α -Werte (von 0–180°) und für 18 verschiedene β -Werte (ebenfalls für den Winkelbereich 0–180°). Nur für die Werte z=0,25(umgerechnet aus α) und $\beta=135^{\circ}$ ergaben die beobachteten und berechneten Intensitäten keine Ausschliessungen, auch war die Berechnung weiterer Intensitäten mit diesen Parameterwerten mit der Beobachtung vereinbar.

Zur genaueren Bestimmung der Parameter wurden Interferenzen herangezogen, die zufällige Auslöschungen zeigen wie z.B. (460) und (280). Aus dem Strukturfaktor kann man ersehen, dass ihre Intensität nur von den Atomen der allgemeinen Lage abhängt und daher auf Parameteränderungen sehr empfindlich anspricht. Die erhaltenen Werte sind x=0,077, y=0,173 und z=0,250. Damit wurden die Intensitäten aller möglichen Reflexionen berechnet und den geschätzten Werten einer Pulveraufnahme gegenübergestellt (Tabelle 1). Die Übereinstimmung ist befriedigend. Bei der Intensitätsberechnung ist zu beachten, dass $hkl \neq khl$ ist. Ferner ergeben sich ausser den aufgeführten noch folgende systematischen Auslöschungen: (hkl) = 0 für $h+k+l \neq 4n$, wenn h=2n, k=2n, l=2n; (hkl)=0, wenn h=2n+1, k=2n+1, l=4n. Keine der nach dieser speziellen Auslöschungsregel verbotenen Interferenzen

Fig. 2. Aufbau des Gitters durch Ketten von Cu-Ionen und N_s -Gruppen (Schraffur). Vorderfläche entspricht (110) der Abb. 3. Es wurden nur zwei (h00)-Ebenen und eine (0k0)-Ebene mit Atomen belegt.

Fig. 3. Elementarzelle von CuN₃. Besonders hervorgehoben ist eine 4-zählige Schraubenachse (gestrichelt); die dazugehörigen Gitterelemente haben Schraffur.

wurde auf dem Film beobachtet, was als weitere Bestätigung der Struktur und des speziellen Parameterwertes angesehen werden kann. Die beiden 4-zähligen Punktlagen (α) und (b) sowie die 8-zählige Lage (e) konnten bei Annahme der beschriebenen N₃-Kette ausgeschlossen werden.

Die anderen noch möglichen Raumgruppen der Klassen C_{4h} -4/m, C_4 -4 und S_4 - $\overline{4}$ konnten ausgeschlossen werden, da die speziellen Lagen eine zu geringe Zähligkeit haben, und die allgemeinen Lagen auf C_{4h}^6 - $I4_1/a$ führen.

Das Gitter ist aufgebaut aus Cu-Ionen und linearen N_3 -Gruppen. Die beiden Gitterbestandteile bilden jede

HEINZ WILSDORF

Tabelle 1. Pulveraufnahme von CuN₃

(Cu	Κα	Strahlung)
-----	----	------------

	θ	$\sin^2 \theta$	$\sin^2 \theta$					θ	$\sin^2 \theta$	$\sin^2 \theta$			
Nr.	gem.	beob.	ber.	hkl	Janah	J_{har}	Nr.	gem.	beob.	ber.	hkl	$J_{\text{gesch.}}$	$J_{\rm ber.}$
	go	20021			Rescu.	Der.		(%)				•	
	(°)		0.0000	011	0	961	60	()		0 5881	273	0	7
1	9,46	0,0270	0,0268	011	8	201	61			0,5049	381	ŏ	12
2	14,03	0,0587	0,0584	211	8	319	60	E1 965	0 6095	0,0040	415	ĭ	10
3	14,66	0,0633	0,0631	220	10	691	02	51,205	0,0085	0,0000	999)	1	(6)
4)	17 625	0.0917	∫0,0912	031	1	[26	63	52.095	0,6226	10,0121	202	2	104
5	17,020	0,0917	10,0912	112)	-	(12	64)		-,	(0,6175	024)	•	(04
6	19,18	0,1080	0,1070	022	8	497	65			0,6313	480	ų	20
7	20,51	0,1227	0,1215	231	4	135	66	54,035	0,6551	0,6512	653	1	9
8	20,955	0,1279	0,1263	400	4	148	67	—		0,6581	901	0 0	Ð
91		•	(0,1530	411)		(79	68			0,6595	572	0	2
10	23.145	0.1544	0.1544	123	4	20	69)	55 195	0 6730	∫0 , 6689	435	1	<u>{13</u>
iil	,		0.1579	240)		16	705	55,125	0,0150	10,6689	505	•	(2
12	24.99	0.1785	0.1777	013	2	36	71	55 02	0 6089	(0,6827	813}	1	ſ 9
12	27,36	0 2112	0.2093	213	2	34	72	00,95	0,0803	10,6827	743∫	1	110
14	27,875	0,2112	(0.2162)	431)		(50	73			(0,6896	921)		(12
151	21,010		0,2162	051	3	29	74	56.565	0.6964	0.6897	671	1	{ 6
10		0,2186	10,2102	339	0	1-0	75	,	-,	0.7005	255		(9
10)	00.045	0.0957	0,2175	499	1	261	76	57 65	0 7133	0.7122	644	2	56
17	29,045	0,2307	0,2333	444	*	201	77	0.,00	.,	0 7212	581	0	5
18	29,535	0,2430	0,2408	000	1		78			0,7226	192	Ō	4
19	30,025	0,2504	0,2477	321	1	29	70	50 56	0 7432	0 7487	833	ĩ	6
20	30,31	0,2547	0,2525	440	L L	31	19	61 195	0,7460	0,7636	615	î	4
21	31,63	0,2751	0,2724	323	1 1	17	00	01,155	0,1009	0,7844	491	ō	10
22	32,185	0,2838	0,2817	152	1	4	01	_		0,7857	209	ŏ	Ĩõ
23)	33 50	0 3046	j0,3019	004	1	112	82	_	_	0,7001	690	ŏ	4
24 J	55,50	0,0010	0,3039	413)	-	(27	83			0,7051	545)	0	(10
25)	24.09	0 3140	∫0 ,3 109	611	2	[39	84	63.215	0.7969	10,7902	040	1	10
26	34,00	0,5140	0,3157	260 (-	(97	85)	,		(0,8008	804)	0	(47
27			0,3281	442	0	0	86		-	0,8090	903	0	10
28)	95 965	0 9499	(0,3424	541)	1	j18	87			0,8159	1,10,1	U O	11
29	30,800	0,3432	10,3438	352∫	-	(3	88			0,8211	330	U	(97
30 j			(0,3596	602)		(58	89	65.58	0.8290	10,8207	2,10,0	1	131
31	07 007	0.9656	0,3653	224	2	49	90)			(0,8267	635)	0	(10
32 Ì	37,205	0,3000	0,3671	343	J	117	91	66,335	0,8388	0,8370	426	2	78
33			0,3671	503		(3	92			0,8384	284	ų.	I
34	37.99	0.3788	0,3740	631	1	12	93	66,725	0,8438	0,8406	923	I	. 8
35	39.225	0.3999	0.3986	253	1	4	94	—		0,8406	763		13
36			0.4056	701	0	10	95			0,8489	772	0	0
37	_		0.4104	460	0	0	96	—		0,8583	705	0	3
38	40 985	0 4301	0.4281	044	2	55	97}	60 69	0.0641	(0,8646	862)	2	J86
30	10,000	0,1001	0 4372	271	ō	16	98	00,02	0,8071	10,8700	664∫	4	(63
40			0 4438	334	ŏ	0	99			0,8721	583	0	19
41)			10 4597	244)	-	(4	100			0,8790	3.10.1	0	12
49	42,92	0,4637	10,4618	613	1	15	101			0.8843	156	0	1
42)			0 4701	172	0	ĩ	102	70.67	0.8904	0.8899	725	1	10
40			0,4701	559	ŏ	2	103			0.9106	781	0	9
44	49.46	0 4791	0,4705	015	ĭ	6	104			0.9120	592	0	4
40	43,40	0,4731	0,4195	649	î	78	105			0.9154	4,10,0	0	0
40	44,300	0,4887	0,4000	459	1	14	106		<u> </u>	0.9323	107	0	6
47		_	0,4934	400	0	09	107	75 31	0.9360	0,9332	484	i	108
48			0,5003	001	0	20	109	10,01	0,0000	0,9353	493	ō	16
49			0,5050	800	ų,	12	100			0,0000	691	ŏ	15
50	45,785	0,5138	0,5111	215	1	14	109			0,0474	356	ŏ	3
51	46,62	0,5283	0,5249	633	1	14		_		0.0520	565	ŏ	22
52)			(0,5348	471)	-	(9				0,9030	066 \	v	(79
53 }	47,00	0,5349	$\{0,\!5348$	811 }	1	{ 10	112	79.065	0,9640	10,9032	107	2	17
54)			10,5332	372)		(2)	113)	,	,	(0,9039	141		196
55	_		0,5366	280	0	0	114	79.96	0.9696	10,9068	1,10,3	1	40
56	_	—	0,5426	305	0	3	115)	,	-,	(0,9684	$000\alpha_2$	0	(0
57	48,295	0,5574	0,5564	703	1	3	116	—		0,9845	185	U	13
58)	40.00	0 5750	(0,5682	660}	1	∫10							
59)	49,00	0,0703	0,5742	325)	1	(8							

 $J = S_F^2 \nu \frac{1 + \cos^2 2\theta}{\sin^2 \theta \cos \theta}; \nu = \text{Flächenhäufigkeit}$

 $S_{F} = F_{\rm Cu} \left\{ \left[\exp \left[2\pi i . \frac{1}{8} (2k+5l) \right] + \exp \left[2\pi i . \frac{1}{8} (4h+2k+l) \right] \right] \left[1 + \exp \left[\pi i k \right] \right] \right.$

+ [exp $[2\pi i . \frac{1}{8}(2h+3l)]$ + exp $[2\pi i . \frac{1}{8}(2h+4k+7l)]] [1 + exp [\pi ih]]$

 $+ \, F_{\rm N} \left\{ \left[\exp \left[2 \pi i \, . \, \frac{1}{8} (2k+l) \right] + \exp \left[2 \pi i \, . \, \frac{1}{8} (4h+2k+5l) \right] \right] \left[1 + \exp \left[\pi i k \right] \right] \right.$

Υ.

 $+ [\exp \left[2\pi i . \frac{1}{8} (2h+7l) \right] + \exp \left[2\pi i . \frac{1}{8} (2h+4k+3l) \right]] \left[1 + \exp \left[\pi i h \right] \right]$

 $+ 2\cos 2\pi (xh + yk) \left[\exp \left[2\pi i \cdot \frac{1}{4}l\right] + \exp \left[2\pi i \cdot \frac{1}{2}k\right] + \exp \left[2\pi i \cdot \frac{1}{4}(2h + 2k + 3l)\right] + \exp \left[2\pi i \cdot \frac{1}{4}(h + l)\right]\right]$

 $+2\cos 2\pi (yh-xk) \left[\exp \left[2\pi i.\frac{1}{4}(3l)\right] + \exp \left[2\pi i.\frac{1}{2}h\right] + \exp \left[2\pi i.\frac{1}{4}(2h+2k+l)\right] + \exp \left[2\pi i.\frac{1}{2}(k+l)\right] \right]$

für sich homogene Ketten, die in Richtung der Raumdiagonalen verlaufen; in aufeinanderfolgenden Ebenen wechseln die Ketten ihre Richtung. In Fig. 2 ist eine Zelle in flächenzentrierter Aufstellung gezeichnet, in die die kleinste Zelle (innenzentrierte Aufstellung, siehe Fig. 3) hineingestellt ist. Der Abstand zwischen zwei Kupferionen und zwischen zwei N_1 beträgt jeweils 3,36 A. (weitere Abstandsverhältnisse Tabelle 2).

Tabelle 2. Nachbarschaften des CuN₃-Gitters

Das Gitter konnte, auch wenn nur der Schwerpunkt der N_3 -Gruppe berücksichtigt wurde, nicht auf einen bekannten Gittertyp zurückgeführt werden.

Ein Vergleich der gefundenen Struktur mit den Azidstrukturen benachbarter Elemente in der ersten Gruppe des periodischen Systems zeigt, dass das CuN_3 aus dem bisher beobachteten Bauprinzip herausfällt. KN_3 kristallisiert in der Raumgruppe D_{4h}^{18} –14 mcm und kann als ein deformiertes CsCl-Gitter aufgefasst werden (Hendricks & Pauling, 1925). Auch AgN₃ gehört dem $F5_2$ -Typ an, ist jedoch rhombisch und nur noch pseudotetragonal (Bassière, 1935). Die Zelle enthält in beiden Fällen 4 Moleküle. Beim CuN₃ besteht die Zelle aus 8 Molekülen, und ein charakteristisches Merkmal der anderen aufgeführten Strukturen—zur Basis parallele, senkrecht aufeinanderstehende N₂-Ketten—ist nicht mehr vorhanden. Diese Anordnung ist nur noch in der Projektion auf die Basisebene wiederzufinden, gegen die die Ketten eine Neigung von 36° 43' haben. Die unerwartete Gitterbildung des Kupferions ist auch bei einigen anderen Cu-Verbindungen zu beobachten, z.B. beim Oxyd und den Halogenverbindungen.

Herrn Professor Dr. Masing danke ich für sein förderndes Interesse an dieser Arbeit, Herrn Professor Dr. Ernst für seine stetige Unterstützung.

Schrifttum

- BASSIÈRE, M. (1935). C.R. Acad. Sci., Paris, 201, 735.
- HENDRICKS, S. B. & PAULING, L. (1925). J. Amer. Chem. Soc. 47, 2904.
- MARTIN, F. (1915). Über Azide und Fulminate und das Wesen der Initialzündung. Darmstadt.
- STRAUMANIS, M. & CIRULIS, A. (1943). Z. anorg. Chem. 251, 315.
- WÖHLER, L. & KRUPKO, W. (1913). Ber. dtsch. chem. Ges. 46, 2045.

Acta Cryst. (1948). 1, 118

The Use of the 'Fly's Eye' Apparatus to Study Crystal Structures containing Atoms of Different Scattering Powers

BY PIETER J. G. DE VOS*

Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 28 January 1948)

Introduction

The 'Fly's Eye' apparatus (Bragg, 1944), as improved by Stokes (1946), consists of a regular array of tiny perspex lenses embossed on a perspex sheet. Its purpose is to form a multiple photograph of a proposed crystal structure projected along some crystallographic direction. This multiple photograph can then be used as a diffraction grating for visible light, and it will give orders of diffraction which have intensities similar to the X-ray reflexions from the real crystal in a zone corresponding to the direction of projection.

A fly's eye apparatus is a valuable aid in the trial and error method of crystal analysis. It was, for example, extensively used by Bunn in the determination of the structure of penicillin.

* Now at University of Stellenbosch, South Africa.

Originally the fly's eye consisted of an array of multiple pinholes instead of lenses, and the complete picture was obtained by moving a lamp into the different atomic positions, and exposing a photographic plate at every position of the lamp. A positive print of this negative photograph was then used as the diffraction grating. When the lens fly's eye was introduced it became practicable to use black disks on an illuminated background which gave the whole multiple picture at one exposure. This picture, consisting of transparent apertures on an opaque background, can be used at once as the optical diffraction grating. As this picture is remarkably clear and well resolved it becomes worth while to inquire fully into the relation between the number and intensity of the orders observed and the size and shape of the apertures.